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ABSTRACT

1. One of the major gaps in the knowledge of sea turtle population dynamics is survival probability, in particular
of juveniles, which represent the bulk of the population and whose survival has the greatest effect on population
growth. One of the major global threats to sea turtles is incidental bycatch, although not all animals die in the
process. This is particularly acute for the loggerhead sea turtle (Caretta caretta).

2. Here fisheries-dependent monitoring is used to seek insights into patterns of survival at multipleMediterranean
foraging areas: north and south Adriatic, north Ionian, and the Tunisian shelf. Annual survival probability was
estimated using the catch curve method. Size data of 2191 loggerhead turtles ranging from 19 to 92 cm curved
carapace length were converted to age according to eight age–size curves available from the Mediterranean Sea.

3. The mean annual survival probabilities for the four areas were heterogeneous and ranged between 0.710 and
0.862. Results suggest that the survival probabilities for Mediterranean loggerheads, especially in some areas, are
lower than would be expected from a healthy population. This is of particular concern for the Greek rookeries,
which appear most affected by anthropogenic mortality occurring in the study areas. This supports the
implementation in those areas of measures mitigating the main threats, notably bycatch.
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INTRODUCTION

Increased fishing effort over the course of the
20th century has produced detrimental effects on
marine ecosystems worldwide (Jackson et al., 2001).
Part of this syndrome has been rising numbers of
incidental captures of non-target species or
bycatch (Kelleher, 2005). Bycatch has become a
serious conservation challenge for marine megafauna
worldwide (Lewison et al., 2004a; Soykan et al.,
2008) and represents one of the most serious threats
to sea turtle populations (Lewison et al., 2004b;
Lewison and Crowder, 2007), which also face
additional pressure from many human activities
including direct exploitation, pollution and climate
change (Lutcavage et al., 1997; Hawkes et al., 2009;
Witt et al., 2010; Keller, 2013).

The long life cycle of sea turtles makes identifying
effective conservation measures and monitoring their
effects difficult. For this reason, models of
population dynamics have been employed to assess
or predict the status of sea turtle populations under
different scenarios (Crouse et al., 1987; Chaloupka
and Musick, 1997; Heppell et al., 2003; Bolten et al.,
2011). Models often lack empirical estimates of
various parameters, and one of the major gaps is
survival probability (Heppell et al., 2003), in
particular of juveniles that represent the bulk of
populations and whose survival has the highest effect
on population dynamics (Heppell, 1998). Sea turtles
frequent a range of habitats during their life cycle,
therefore survival probabilities are expected to vary
by species, population, area, and life stage. Although
such information is growing, it is still limited to
certain populations and life stages of loggerhead
turtles (Caretta caretta) (Frazer, 1983, 1987; Heppell
et al., 1996; Chaloupka and Limpus, 2002; Bjorndal
et al., 2003b; Sasso et al., 2006, 2011; Casale et al.,
2007c; Sasso and Epperly, 2007; Monk et al., 2011),
green turtles (Chelonia mydas) (Bjorndal, 1980;
Chaloupka, 2002; Bjorndal et al., 2003a; Campbell
and Lagueux, 2005; Chaloupka and Limpus, 2005;
Koch et al., 2007; Troeng and Chaloupka, 2007;
Eguchi et al., 2010; Patricio et al., 2011), hawksbill
turtles (Eretmochelys imbricata) (Richardson et al.,
1999; Bell et al., 2012; Prince and Chaloupka, 2012),
Kemp’s ridley turtles (Lepidochelys kempii)
(Caillouet et al., 1995), and leatherback turtles
(Dermochelys coriacea) (Chua, 1988).

Two methods have been employed to
estimate survival probabilities of sea turtles:
capture–mark–recapture and catch curve analysis
(Heppell et al., 2003). Capture–mark–recapture
requires extensive tagging in order to obtain
adequate recapture events, especially at foraging
grounds. Catch curve analysis requires a large
sample of individuals of known age, where the age
distribution is representative of the population.
It was originally developed for use in fish (Ricker,
1975; Reid, 2009; Gray et al., 2010; Trested
and Isely, 2011; Fazli et al., 2012) and has since
been used on other taxa (e.g. shrimps: Baker and
Minello, 2010; crabs: Diele and Koch, 2010;
bivalves: Jones and Neves, 2011), including turtles
(Frazer, 1987; National Marine Fisheries Service
Southeast Fisheries Science Center, 2001; Bjorndal
et al., 2003b; Heppell et al., 2005; Koch et al., 2007).

The loggerhead turtle Caretta caretta is the most
common sea turtle species in the Mediterranean.
The region hosts oceanic and neritic habitats for
animals belonging to two regional management
units: the Mediterranean and the Atlantic (Wallace
et al., 2010). The Mediterranean population has
reproductive habitats and main foraging grounds
concentrated in the eastern basin but disperse
widely throughout the eastern and western basins,
both as juveniles and as adults (Casale
and Margaritoulis, 2010). The main identified
threats to sea turtles in the Mediterranean Sea are
degradation of reproductive habitats (Casale and
Margaritoulis, 2010 and references therein),
incidental catch in fishing gear, collision with boats,
and intentional killing (Tomás et al., 2008; Casale
et al., 2010; Casale, 2011) that as a whole is
considered to be a high level of anthropogenic
threat to the Mediterranean regional management
unit (Wallace et al., 2011). How the current
level of threat affects the Mediterranean loggerhead
population is, however, unclear. Although anecdotal
information suggests a decline over decadal scales
(Casale and Margaritoulis, 2010), the limited
information about recent trends is inconclusive (Ilgaz
et al., 2007; Turkozan and Yilmaz, 2008; Casale and
Margaritoulis, 2010; Margaritoulis et al., 2011;
Casale et al., 2012b).

In the Mediterranean, capture–mark–recapture
could be used to estimate survival probabilities of
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juvenile loggerheads, thanks to a long-term tagging
project at foraging areas (Casale et al., 2007c).
However, the lack of a size–age relationship has
prevented the use of catch curve analysis on
Mediterranean loggerheads so far.

Growth curves have recently become available for
Mediterranean loggerheads (Casale et al., 2009, 2011a, b;
Piovano et al., 2011), together with adequate data sets
from major foraging areas, and the present study
provides the first application of catch curve analysis in
the Mediterranean, with the aim of: (i) contributing
to the current knowledge of sea turtle survival
probabilities and specifically with estimates about
juvenile loggerhead turtles in the Mediterranean,
and (ii) comparing survival probabilities at different
Mediterranean foraging grounds.

MATERIALS AND METHODS

Annual survival probability (S) of loggerhead sea
turtles in the Mediterranean was calculated
through the catch curve method (Ricker, 1975).
This method analyses frequency distributions
of age classes and assumes that (i) the age
distribution of the population is stable, (ii)
mortality is constant during the sampling period,
(iii) mortality is constant among age/size classes
considered, and (iv) above a certain age, the
age structure of the sample is representative of
the population. Assumptions (i) and (ii) are
problematic for sea turtle populations, where such
information is difficult to obtain or where
populations are not stable. As noted above, there
is no clear indication regarding a trend of the
Mediterranean loggerhead turtle population in
recent years. In particular, one of the most
important rookeries, at Zakynthos, Greece,
showed no significant trend during 19 years
(1984–2002; Margaritoulis, 2005). Assumptions (i)
and (ii) have been considered as acceptable.
Regarding assumption (iii), the present study
analysed separately datasets from different areas
in which the common habitat, common threats
and limited size range of the captured turtles
minimize the potential sources of heterogeneity.
Regarding assumption (iv), the present study
analysed datasets collected only through sampling

methods where the effect of size on catchability is
likely to be low, i.e. turtles within a certain size
range have the same probability of being captured.
The sample was made up of turtles caught
incidentally by trawlers and longliners. Trawl nets
capture all the animals they encounter and result
in them being brought aboard. For large vessels,
there is no problem of room on the deck and
fishermen collaborating with research programmes
are assumed to land turtles independently of
their size. Longliners using large hooks for
swordfish can capture all turtles over a certain size.
However, in contrast with trawlers, longline vessels
are relatively small with less room on the deck.
Therefore, large turtles may be under-represented in
programmes where longline fishermen are just
asked to land turtles. For this reason, only longline
samples collected by onboard observers were
considered. Since our target was the Mediterranean
population of loggerhead turtles, the samples
analysed were from the eastern Mediterranean only,
where the occurrence of individuals from the
Atlantic is low (Maffucci et al., 2006; Casale et al.,
2008b; Giovannotti et al., 2010) in comparison with
the western Mediterranean (Carreras et al., 2011;
Clusa et al., 2014).

The selected datasets were from four areas
(Figure 1), comprising 2191 loggerhead turtles:
Tunisian shelf (TS, bottom trawlers; 2001–2011;
n = 1261); north Ionian (NI, pelagic longliners;
1999–2000; n = 124); south Adriatic (SA, bottom
trawlers; 2007–2013; n= 635); north Adriatic
(NA, midwater trawlers; 2000–2012; n = 171).
Length data consisted of curved carapace length
notch-to-tip (i.e. nuchal scute to longest point
of supracaudals; CCL) (Bolten, 1999). The
analysis was limited to juveniles because in the
Mediterranean adult males start migrating to
breeding sites as early as October (Schofield et al.,
2010; Casale et al., 2013) and adult females return
to foraging grounds as late as October (Zbinden
et al., 2011), hence adults are expected to be
under-represented at foraging grounds all year
round, confounding mortality with migration.
Since the average loggerhead female starts
breeding at a size slightly smaller than the average
size of nesting females (Limpus, 1990), turtles were
considered as adults, and excluded from the
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analysis, if larger than 79.7 cm CCL, which is the
mean size of nesting females in the Mediterranean
weighted for rookery abundance (number of nests
per year) (Table S1 in the Supplementary
material). Each of the four samples was analysed
separately and age distribution was derived
from size distribution as follows. Each turtle was
assigned to a 1-year age class (i.e. year 1, 2, 3, etc. of
life) on the basis of eight different growth curves
available for loggerheads in the Mediterranean,
obtained through capture–mark–recapture (CMR),
length–frequency analysis (LFA1-2), and
skeletochronology (SKEL1-5) (Casale et al., 2009,
2011a, 2011b; Piovano et al., 2011). Thirty-two age
distributions resulted from the eight growth curves
applied to the samples from the four study areas. For
each of these 32 age distributions, the annual survival
probability was estimated by a catch curve analysis
(Bjorndal et al., 2003b). The natural logarithm of the
number of turtles in each age class was plotted against
the corresponding age class. In each age distribution,
the age class including the highest number of
individuals was assumed to be the first age class with
full recruitment at the foraging ground with the
sampling method used, and younger age classes were
excluded from the analysis. A linear regression was
fitted to the remaining data and the instantaneous
mortality rate (Z) was estimated as the descending
slope. Survival probability was calculated as S= e-Z.

For each of the eight age–size relationships an
ANCOVA (R Development Core Team, 2013)
was conducted, and in case heterogeneity of slopes
was detected among the four areas (north
Adriatic, south Adriatic, north Ionian, Tunisian
shelf), a post-hoc Tukey test was also conducted to
detect which pairs were significantly different.
These pairs were then also tested for confirmation
through pair-wise comparisons of the slopes
(Z, instantaneousmortality rate) as follows (Zar, 1999):

t ¼ Z1 � Z2

sZ1�Z2

¼ Z1 � Z2ffiffiffiffiffiffiffiffiffiffiffi
s 2Z1

þ
q

s 2Z2

where sz is the standard error of the slope Z.
Significantly different slopes were assessed from
t distribution (α=0.05; two tailed; df = n1 + n2 – 4).

RESULTS

Curved carapace lengths (CCL) of all turtles (before
selection for the analyses) ranged from 23.5 to
85.0 cm (mean: 55.4; SD: 14.4; n=171) for the north
Adriatic, from 21.3 to 92.0 cm (mean: 56.5; SD: 11.9;
n=635) for the south Adriatic, from 19.0 to 77.5 cm
(mean: 44.2; SD: 11.0; n=124) for the north Ionian,
and from 19.0 to 89.0 cm (mean: 53.3; SD: 13.1;
n=1261) for the Tunisian shelf (Figure S1 in
the Supplementary material). Regression slopes
(Z, instantaneous mortality rate) were calculated for
different age intervals, depending on the age–size
relationship and area (Figure 2; Table 1). Linear
regression had a moderate coefficient of
determination r2 in most age distributions of the
north Adriatic. The ANCOVA revealed a significant
difference (P< 0.001) among the slopes. Slopes (Z)
of the eight age-size relationships for the south
Adriatic were significantly different from one or
more of the other three areas (Table 1), indicating a
lower survival probability. In some cases, slopes were
significantly different between the north Ionian and
the Tunisian shelf (Table 1). The mean of the eight
estimated annual survival probabilities (Figure 3)
was lower for the south Adriatic (mean: 0.710;
range: 0.656–0.790), than for the Tunisian shelf
(mean: 0.862; range: 0.840–0.904), the north Adriatic
(mean: 0.839; range: 0.801–0.891), and the north
Ionian (mean: 0.817; range: 0.786–0.885).

Figure 1. Mediterranean areas of capture (circles) of the loggerhead sea
turtles considered in this study: north Adriatic (NA), south Adriatic
(SA), north Ionian (NI), Tunisian shelf (TS). The 200m isobath is
delineated. AL, Albania; DZ, Algeria; BA, Bosnia, and Herzegovina;

GR, Greece; HR, Croatia; ME, Montenegro.
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On the basis of the mean value of the coefficients of
determination (r 2) of the four areas for each age–size
relationship, the ranking of fit of the different
age–size relationships would be: SKEL3, SKEL1,
CMR, SKEL2, LFA1, SKEL4, SKEL5, LFA2
(Table 1). This ranking suggests a better fit of
age–size relationships with an estimated L∞ and a
low age at maturity (e.g. SKEL3, SKEL1, CMR)
than age–size relationships with a fixed L∞ and a
high age at maturity (e.g. LFA2, SKEL5).

DISCUSSION

This study provides estimates of annual survival
probabilities of Mediterranean juvenile loggerheads,
which will feed future population dynamics models,
and also provides evidence of spatial differences,
possibly associated with area-specific anthropogenic
threats. The only previous estimate of juvenile
survival probability in the Mediterranean Sea (0.73)
was obtained through capture–mark–recapture and
it was considered an underestimate owing to tag loss
(Casale et al., 2007c). If a tag loss of about 0.1 is
considered (Casale et al., 2007c), the corrected
survival probability of about 0.83 would be similar
to the survival probabilities estimated by the present
study, with the exception of one area (south Adriatic).

The present data are in the range of estimates
available from other loggerhead turtle populations
(range 0.410–0.918; Table 2). However, a healthy

population would be characterized by higher survival
probabilities, and the highest values known for oceanic
juveniles, neritic juveniles and adults are above 0.91
(Table 2). Caution is needed when comparing results
obtained from different populations with different
methods. Notwithstanding, these results suggest
that the survival probabilities of Mediterranean
loggerheads, especially in some areas, are somewhat
lower than what would be expected from a healthy
population. This may be caused by the high bycatch
levels in the basin, that represent the most important
source of anthropogenic mortality at sea (Casale,
2011) and by other, less studied threats (pollution;
Lazar and Gračan, 2011; Lazar et al., 2011).

In the north Ionian, turtles were captured by
pelagic longliners and were probably foraging
mainly upon pelagic prey. Loggerhead turtles
frequent different habitats during their life, with a
general tendency to frequent oceanic habitats first
followed by neritic habitats. Recruitment to neritic
habitats on the Tunisian shelf and the Adriatic
from the oceanic area in the north Ionian has
previously been inferred in the Mediterranean
from tag returns (Casale et al., 2007b). Hence, in
the north Ionian, mortality induced by fishing gear
(Deflorio et al., 2005) may be confounded by
permanent emigration to neritic habitats, possibly
resulting in underestimated survival probabilities
(Bjorndal et al., 2003b). This would represent a
violation of assumption (iv) and makes the

Figure 2. Examples of age distribution of loggerhead turtles (ln) from four Mediterranean areas, converted from size data. Only distributions obtained
from the two growth curves with highest coefficients of determination (r2) are shown (see Table 1): SKEL3 (a, b) and SKEL1 (c, d). Regression lines are

shown for the age range between the most abundant age class and the age at maturity.
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interpretation of results from this area more difficult
than in other areas. In contrast, the other three
areas are neritic habitats, and can be assumed to
be relatively final recruitment areas. Furthermore,
satellite tracking has revealed a certain degree of
fidelity by juvenile loggerhead turtles foraging in
these areas (Casale et al., 2012a, c; Casale, unpubl.
data) and this suggests that the observed survival
probabilities are area-specific, at least in part, and
therefore are affected by local anthropogenic

sources of mortality. High bycatch levels have
been recorded in two of these areas, the Tunisian
shelf (Casale et al., 2007a; Jribi et al., 2007, 2008;
Echwikhi et al., 2010, 2012) and the north
Adriatic (Lazar and Tvrtković, 1995; Casale et al.,
2004; Fortuna et al., 2010), and represent the most
likely explanation for the reduced survival
probability suggested by the present results. The
third neritic area, the south Adriatic, was only
recently recognized as an important foraging area,
where loggerheads are incidentally captured in high
numbers (Casale et al., 2012d). The particularly
low survival probabilities estimated in this area,
significantly lower than the other two neritic areas,
highlights the need for specific investigation on the
mortality induced by fishing gear in this area that
has not yet been fully quantified.

It is important to relate the survival probabilities
and the threats occurring in these areas to the
rookeries of origin of the turtles. Genetic markers
indicate that the main origin of turtles foraging in
the north Adriatic is Greece and to a lesser extent
Turkey (Giovannotti et al., 2010; Garofalo et al.,
2013) supporting previous information from tag
returns of adult females nesting in Greece (Lazar
et al., 2004; Zbinden et al., 2008). A similar
situation probably occurs in the south Adriatic,
although no information is available from this area
yet. The north Ionian is probably a developmental
area for loggerheads born in the adjacent Greek
rookeries, as suggested by dispersal models (Casale
and Mariani, 2014) and by the small turtles found
stranded in that area (Casale et al., 2010), and
genetic markers indicate that it is also frequented by
turtles from Turkey (Garofalo et al., 2013). The
Tunisian shelf is frequented by turtles from several
Mediterranean rookeries and also by some Atlantic
turtles. Recent information from genetic markers
(Garofalo et al., 2013) and satellite tracking (Casale
et al., 2013) highlights the importance of this area
for turtles from Libya, and to a lesser extent from
Greece, as previously indicated by tag returns
(Margaritoulis et al., 2003) and satellite tracking
(Zbinden et al., 2011). Therefore, the observed
reduced survival probabilities, and especially those
frequenting the Adriatic Sea, may imply that Greek
rookeries are particularly affected by anthropogenic
mortality occurring in these areas.

Figure 3. Annual survival probability (S) of loggerhead turtles from four
Mediterranean areas, estimated from age distributions obtained through
the eight age–size curves available for the Mediterranean Sea and based
on capture–mark–recapture (Casale et al., 2009), length–frequency
analysis (Casale et al., 2011b), and skeletochronology (Casale et al.,
2011a; Piovano et al., 2011). Average values for each area are given and

indicated by solid bars. See Table 1 for complete results.

Table 2. Annual survival probabilities of loggerhead sea turtles per area
and life stage (rounded to the third decimal place). Source: a, Heppell
et al. (1996); b, Chaloupka and Limpus (2002); c, Frazer (1983); d,
Monk et al. (2011); e, Sasso et al. (2011); f, National Marine Fisheries
Service Southeast Fisheries Science Center (2001); g, Sasso et al.
(2006); h, Frazer (1987); i, Bjorndal et al. (2003b); j, Sasso and
Epperly (2007); k, Casale et al. (2007c)

Life stage Area Survival Source

Adult Australia (Heron Reef) 0.910 a
Australia (Mon Repos) 0.782 a
Australia 0.875 b
South-east USA 0.809 c
North Carolina, USA 0.850 d
Florida, USA 0.410-0.600 e

Neritic juvenile Australia 0.885 a
Australia 0.830 a
Australia 0.918 b
South-east USA 0.893 f
North Carolina, USA 0.810 g
South-east USA 0.700 h
South-east USA 0.680 h

Oceanic juvenile Azores 0.911 i
Atlantic USA 0.814 j

Juvenile Mediterranean 0.730 k
Mediterranean 0.710-0.862 present

study
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Size data indicate that full recruitment occurs at a
different size in the sampled neritic areas. Although
benthic feeding by small turtles was observed both
in the Adriatic Sea (Lazar et al., 2008) and in the
Tunisian shelf (Casale et al., 2008a), the present
results provide evidence that early recruitment to
neritic habitats is more common in the Tunisian
shelf than in the Adriatic Sea.

Identifying reliable methods for estimating
demographic parameters is considered a priority
for sea turtle conservation and management (Hamann
et al., 2010). Although catch-curve-analysis is based
on several assumptions about mortality and on
the knowledge of an age–size relationship, data are
relatively simple to obtain in comparison with
capture–mark–recapture which requires extensive
tagging and long time series. In the Mediterranean,
further studies on survival probabilities are desirable,
and intensive in-water sampling should be conducted at
major foraging areas. In-water sampling can be
accomplished either through direct capture (Rees et al.,
2013) or by taking advantage of incidental catches by
fishing gears, in particular trawlers, as in the present
study. Intensive in-water sampling can greatly reduce
the data collection period for catch-curve-analysis
and hence can resolve one of its most important
assumptions, i.e. stable population structure during the
sampling period. Intensive in-water sampling can also
provide data for capture–mark–recapture if associated
with tagging and if extended for several years, and can
also contribute to catch-curve-analysis by providing
further age–size relationships. Furthermore, monitoring
possible change of survival probability across
time, in index areas, will greatly inform assessments of
conservation status and help parameterize the
magnitude of local threats. Ultimately, strong survival
probability data will support the implementation, at
specific areas, of conservation measures to reduce
the impact of threats on the populations, for
instance technical modifications of fishing gears to
reduce bycatch levels (Lucchetti and Sala, 2010) or
onboard best practice to reduce post-release
mortality rates (Gerosa and Aureggi, 2001).
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