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ABSTRACT

Temperature can have a profound effect on the phenotype of
reptilian offspring, yet the bulk of current research considers
the effects of constant incubation temperatures on offspring
morphology, with few studies examining the natural thermal
variance that occurs in the wild. Over two consecutive nesting
seasons, we placed temperature data loggers in 57 naturally
incubating clutches of loggerhead sea turtles Caretta caretta
and found that greater diel thermal variance during incuba-
tion significantly reduced offspring mass, potentially reducing
survival of hatchlings during their journey from the nest to
offshore waters and beyond. With predicted scenarios of cli-
mate change, behavioral plasticity in nest site selection may
be key for the survival of ectothermic species, particularly
those with temperature-dependent sex determination.

Introduction

Abiotic factors can have a profound influence on embryonic
development in reptiles, notably, temperature (Booth 2006).
Thermal environmental shifts have the power to influence
numerous aspects of egg incubation, such as incubation du-

ration, offspring sex ratios, hatching success, morphology, and
locomotor performance, in a vast number of reptile species
(Godfrey et al. 1999; Brana and Ji 2000; Godley et al. 2001;
Ashmore and Janzen 2003; Booth 2006; Witt et al. 2010; Ref-
snider 2013). Given climate change predictions and their
associated risks to biodiversity (Sala et al. 2000; Thomas et al.
2004; Hansen et al. 2006; Goodess et al. 2011), it is becoming
increasingly important that we seek to quantify and under-
stand the potential environmental pressures that threaten the
survival of vulnerable wild reptile populations, whose life
strategies are inherently linked with climate.
In an attempt to understand the relationship between tem-

perature and phenotype, a large number of studies have ex-
amined the effect of constant incubation temperatures on
aspects of reptilian offspring morphology, performance, and
survival (Ashmore and Janzen 2003; Du and Ji 2003; Schwanz
and Janzen 2008; Micheli-Campbell et al. 2012; Refsnider
2013). The results of such studies are by no means universal,
as highlighted in Booth (2006), in which contradictory find-
ings from a range of investigations into the relationship be-
tween incubation temperature and offspring locomotor per-
formance, as well as posthatch growth rates, are presented for
freshwater turtles, lizards, snakes, and crocodilians.
One near-universal pattern that is typically observed in

ectotherms is the temperature-size rule (TSR). This is a phe-
notypically plastic within-species response in which organ-
isms reared in warm temperatures mature to a smaller adult
body size than those reared in the cold (Atkinson 1994; At-
kinson and Sibly 1997; Forster et al. 2011, 2012, 2013; For-
ster and Hirst 2012). Studies of the TSR focus predominantly
on constant temperatures, comparing size at maturation in
warmer environments versus colder environments. However,
an increasing number of publications have also begun to
emphasize the role of temperature variation in determining
physiological and morphological attributes, with one recent
study suggesting that increased temperature variation poses
a greater risk to invertebrate species than climate warming
(Vasseur et al. 2014). Similarly, a growing number of studies
have begun to examine thermal variance during incubation
and its effect on body size and other traits of reptilian off-
spring (Ashmore and Janzen 2003; Micheli-Campbell et al.
2012; Georges 2013; Li et al. 2013; Refsnider 2013), such as
crawl and swim speed in freshwater turtles (Refsnider 2013)
and hatching duration and success in lizards (Du and Feng
2008).
Despite the growing interest in thermal variance, relatively

little focus has been given to marine turtles, perhaps because
it is more challenging to successfully rear and study them
in a temperature-controlled laboratory environment. As long-
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lived migratory reptiles, which exhibit temperature-dependent
sex determination (TSD), natal philopatry, and high levels of
site fidelity (Lutz et al. 2003), they have become the focus of
extensive conservation efforts because of a magnitude of an-
thropogenic threats, such as coastal development, accidental
capture in fishing gear, and illegal harvesting, as well as a
rapidly changing abiotic environment (Polidoro et al. 2008).
Marine turtles have been at a progressively greater risk from
abiotic stress over the past 2 decades, particularly in the Medi-
terranean, where temperature extremes have continued to rise
(Sala et al. 2000; Hansen et al. 2006; Goodess et al. 2011).
While some may argue that, despite extensive climatic shifts,
reptiles have persisted for millennia, such changes most likely
occurred gradually, allowing species to adjust, adapt, and
evolve to their changing environment over time (Booth 2006).
The current anthropologically forced rate of change far ex-
ceeds that experienced in the past, and the Mediterranean
region is predicted to undergo one of the greatest changes in
biodiversity globally (Sala et al. 2000; Goodess et al. 2011).
In light of the observed and predicted temperature in-

creases and their associated risks, many studies have looked
to strengthen our knowledge of TSD in marine turtles, in
which an incubation temperature above approximately 297C
produces a larger proportion of females and an incubation
temperature below 297C produces a larger proportion of males
(Marcovaldi et al. 1997; Girondot 1999; Godfrey et al. 1999;
Godley et al. 2001; Mrosovsky et al. 2009; Witt et al. 2010;
LeBlanc et al. 2012). However, few studies have looked to
quantify the effects of incubation temperature on other char-
acteristics of offspring phenotype, such as size, with a handful
having done so in natural nests without manipulation and
the use of artificial incubation (Glen et al. 2003; Mickelson and
Downie 2010; Read et al. 2013). Although artificial incuba-
tion can undoubtedly enhance our knowledge of the rela-
tionship between temperature and phenotype, such studies
typically keep temperatures constant or cycled at a constant
rate, failing to imitate the natural and unpredictable thermal
variance that occurs in the wild. This thermal variation, and
the rate at which it occurs, has the potential to significantly
influence offspring development and is difficult to re-create
in a laboratory environment. Thus, studies on in situ clutches
are essential in order to understand the true nature of this
relationship and how it is likely to change.
The primary objective of this study was to quantify the

effects of thermal variance on offspring mass of the logger-
head turtle (Caretta caretta) in naturally incubating nests. The
loggerhead is arguably the most ecologically generalized ma-
rine turtle, being globally distributed and having one of the
least specialized diets of all marine turtle species, making it an
ideal model species in which to assess the impact of global
abiotic stress (Bolten and Witherington 2003). Given what
has been presented in laboratory-based studies of freshwater
turtles and other reptiles (Ashmore and Janzen 2003; Booth
2006; Micheli-Campbell et al. 2012), we hypothesize an in-
verse relationship between thermal variance and offspring
mass, in which greater diel temperature fluctuations during

incubation will produce smaller offspring. Detecting such a
relationship will bring us closer to understanding the link
between thermal variance and phenotype in reptilian species.
We also seek to understand and control for the role of ma-
ternal factors in influencing the amount of thermal variance
experienced during incubation, as maternal effects and the
extent to which females can exhibit behavioral plasticity may
be key to the survival of the species in the face of rapid en-
vironmental shifts.

Material and Methods

Study Site

This investigation was conducted at an established study site
on Alagadi Beach (35733′N, 33747′E), located in northern
Cyprus in the eastern Mediterranean. This 2-km stretch of
beach comprises two short coves, approximately 0.8 and
1.2 km long, divided by a rocky headland. Alagadi Beach
is recognized as one of the most important turtle nesting
beaches for loggerhead turtles in Cyprus and in the eastern
Mediterranean. Consequently, it has been designated a Spe-
cially Protected Area because of the high number of marine
turtles that frequent the beach each year during the breed-
ing season (May–October). Although the beach is open to the
general public during the day, it is closed at night, between
2000 and 0800 hours, for the duration of the breeding sea-
son to avert any possible disturbance to nesting turtles and
hatching nests. Average daily air temperatures throughout the
breeding season generally range between 277 and 367C, and
there is little or no rainfall during the summer months. No
nests experience shading on Alagadi Beach.

Data Collection

We recorded intranest temperature for 57 Caretta caretta
clutches laid by 29 females during the 2011 and 2012 nesting
seasons. Temperature loggers (Tinytag, Gemini Dataloggers,
Chichester, UK; resolution 50.17C, accuracy 50.37C), which
had been previously calibrated and programmed to record
at hourly intervals, were placed approximately in the center
of the clutch during laying, at which point the female was
measured (curved carapace length [CCL]), tagged if no ex-
isting tags were present, and allowed to cover her eggs nat-
urally. After 40 d of incubation, a circular wire mesh ring cage
(height p 30 cm, diameter p 2 m) was placed around the
nest to capture emerging hatchlings. Hatchlings were then
weighed using electronic scales (accuracy 50.1 g), measured
using digital callipers (straight carapace length; accuracy
0.1 mm), and released. We sampled the first 10 hatchlings to
emerge or a randomly selected subsample when 110 emerged
in a group on the initial night of hatchling emergence. Fol-
lowing hatchling emergence, the clutch remains were exca-
vated, the depth of the top and bottom of the clutch and of
the temperature data logger were recorded to the nearest cen-
timeter using a measuring tape (calculated as an average of
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three repeat measurements), and the data logger was retrieved.
Clutch success was assessed through counts of hatched and
unhatched egg shell fragments.

Data Analysis

Mean incubation temperature was calculated as the average
of all temperature readings taken between the time of laying
and midnight on the initial night of hatchling emergence. Diel
thermal variance was calculated as the average daily tempera-
ture fluctuation experienced during incubation (i.e., the mean
of the difference between the minimum temperature and the
maximum temperature for each day of incubation).
All statistical analyses were conducted using the statisti-

cal software package R (ver. 2.13.2). Three generalized linear
mixed models (GLMMs) were used to analyze the effect of
both maternal (female size, lay date, clutch size, clutch num-
ber, total number of clutches laid by the female, nest depth)
and abiotic (mean incubation temperature, mean diel thermal
variance) factors on mean offspring mass and hatching suc-
cess, as well as to determine the significant drivers of thermal
variance. Female ID and year were included as random factors
in all instances. Final models were generated using stepwise
elimination of nonsignificant terms (P 1 0.05). Significance of
all fixed variables was calculated using maximum likelihoods
and Wald statistics (x2). In addition, regression analysis was
used to assess whether a significant relationship (P ! 0.05) ex-
isted between mean female CCL and (a) mean nest depth and
(b) mean diel thermal variance.

Results

A total of 57 clutches were monitored across two consecutive
nesting seasons (2011: n p 30; 2012: n p 27), during which a
total of 864 loggerhead turtle hatchlings were measured (2011:
n p 410; 2012: n p 454). Table 1 shows maximum, mini-
mum, and mean values for all relevant data used in this in-
vestigation. The distribution of nest depths (midpoint depth
of clutch) in both years was very similar (fig. A1a). Mean off-
spring mass varied markedly, however, being approximately
11.3% lower in 2012 than 2011 (fig. A1b). Mean diel thermal
variance during incubation ranged from 0.177 to 1.417C. This

variation decreased toward the middle of the nesting season,
before gradually increasing again. This increase was partic-
ularly great in 2012 from mid-July onward (fig. 1). Mean in-
cubation temperature increased initially, gradually decreasing
toward the middle of August, reflecting expected seasonal sur-
face temperature changes and peaking at 33.37C in 2011 and
34.07C in 2012 (fig. 1).
Of the maternal effects (female size, lay date, clutch size,

clutch order, total number of clutches, nest depth) and abiotic
factors (mean incubation temperature, diel thermal variance)
included in our model, only mean diel thermal variance had a
significant influence on mean offspring mass (GLMM; x2

4; 5 p
19.23, P ! 0.001; fig. 2a); for every 0.57C increase in mean diel
thermal variance during incubation, mean offspring mass de-
creased by approximately 0.74 g, which is equivalent to 4.6% of
body mass.
Consequently, a second GLMM was used to determine the

drivers of change in mean diel thermal variance (mean nest
depth, mean female CCL). Mean diel thermal variance was
significantly influenced only by mean nest depth (GLMM;
x2
4; 5 p 8.77, P p 0.003; fig. 2b); for every 10-cm increase in

mean nest depth, mean diel thermal variance decreased by
0.157C. We also found a significant positive relationship be-
tween mean female CCL and mean nest depth (ANOVA;
F1, 55 p 10.49, P p 0.002; fig. 2c) and a corresponding negative
relationship between mean female CCL and mean diel thermal
variance (ANOVA; F1, 47 p 9.99, P p 0.003).
Having established how both maternal and abiotic factors

influenced offspring phenotype, a final model (incorporating
mean diel thermal variance, mean incubation temperature,
and mean nest depth) was used to determine which of these
factors, if any, significantly influenced hatching success. Only
mean incubation temperature had a significant influence on
hatching success (GLMM; x2

4; 5 p 17.77, P ! 0.001). Hatching
success appeared to be greatest between 317 and 327C, and our
data suggest that clutches incubated at a mean temperature ex-
ceeding 35.17C will result in 0% hatching success (fig. 2d).

Discussion

Having collected data over two consecutive nesting seasons,
we show that thermal variance during incubation does sig-

Table 1: Descriptive statistics of 2011 and 2012 data collected for female curved carapace length (CCL), offspring mass,
nest depth, mean diel thermal variance per nest, and mean incubation temperature per nest

Female CCL (cm) Offspring mass (g) Nest depth (cm)
Mean diel thermal

variance (7C)
Mean incubation
temperature (7C)

2011 2012 2011 2012 2011 2012 2011 2012 2011 2012

Maximum 81.6 80.2 18.2 17.8 55.8 54.3 1.1 1.4 33.3 34.0
Minimum 65.3 68.5 11.1 11.4 19.8 28.3 .2 .2 30.7 29.0
Mean 75.8 75.0 16.3 14.5 42.3 42.8 .5 .5 32.1 32.3
5SE 1.1 1.0 .3 .3 1.5 1.1 .1 .1 .1 .3

Note. Number of clutches: 2011, n p 30; 2012, n p 27. Temperature readings were taken from data loggers placed in the approximate center of the clutch at
the time of laying.
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nificantly influence offspring mass in loggerhead turtles. The
apparent inverse relationship between the extent of diel ther-
mal variance experienced during nest incubation and logger-
head turtle offspring mass supports our hypothesis, comple-
menting the findings of previous laboratory-based studies
on reptiles (Ashmore and Janzen 2003; Booth 2006; Micheli-
Campbell et al. 2012) and strengthening their reliability by
verifying that a similar relationship does exist in the wild.
Besides the direct influence of abiotic factors, because of

seasonal variability in environmental conditions, thermal vari-
ance was significantly influenced by nest depth, not surpris-
ingly, as shallower nests have an increased proximity to the
sand surface and a greater vulnerability to abiotic change
(Booth 2006). Perhaps more interestingly, nest depth was sig-
nificantly coupled with female size, suggesting that this is an
important maternal factor in determining the extent of tem-
perature variation experienced during incubation and con-
sequently offspring mass. The results suggest that, although
female size does not appear to directly affect offspring mass
via a genetic hereditary component, it does have an environ-
mental maternal influence.
But why does offspring mass matter? Direct links between

turtle hatchling morphology and fitness have been previously
proposed (Ashmore and Janzen 2003; Booth 2006; Burgess
et al. 2006; Mickelson and Downie 2010; Micheli-Campbell
et al. 2012; Read et al. 2013; Refsnider 2013), and any change
in mass as a result of abiotic stress has the potential to affect
hatchling survival during their initial journey from the nest
to the sea, a stage in which they face a substantial predatory

threat from canids, feral/domestic dogs, birds, and ghost crabs.
A negative change in marine turtle hatchling mass has been
shown to be accompanied by a decrease in flipper size and a
decline in terrestrial locomotion performance (Mickelson and
Downie 2010). Conversely, Refsnider (2013) showed that an
increase in diel thermal variation increased hatchling speed
in freshwater turtles. In addition, higher incubation temper-
atures have been revealed to reduce swimming speed in green
turtles Chelonia mydas (Burgess et al. 2006). Turtle hatchlings
face a considerable predatory threat once in the water, and a
reduction in swimming speed would increase the amount of
time spent in the predator zone. Indeed, Gyuris (2000) found
that larger freshwater turtle hatchlings had significantly
greater survivorship because of the limited gape size of the
fish that prey on them, suggesting that there is a fitness ad-
vantage to being bigger. Any significant increase in diel ther-
mal variance experienced during incubation is likely, there-
fore, to have consequences for hatchling mass, locomotion
performance, predation risk, and ultimately survival.
Clearly, the proximate mechanisms that cause marine turtle

offspring to be smaller under greater thermal variance still
need to be addressed. Although the effect of mean incubation
temperature on hatchling mass was found to be nonsignificant
in our model, it should not be overlooked. For instance, higher
mean incubation temperatures have been shown to produce
significantly smaller hatchlings in the green turtle (Burgess
et al. 2006). It may be that the effect of mean incubation tem-
perature on hatchling mass was not strong enough to detect
from our data. Sand water content has also been shown to be

Figure 1. Change in mean incubation temperature (n-shaped curve) and mean diel thermal variance during the nesting season for 2011 (solid
line) and 2012 (dotted line).
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positively correlated with hatchling size in loggerheads (Mc-
Gehee 1990; Reece et al. 2002). Addressing these concerns
would undoubtedly help improve our understanding of the
mechanisms governing this relationship.
In contrast to the findings of a recent laboratory-based

study on freshwater turtles (Micheli-Campbell et al. 2012),
thermal variance appeared to have no significant influence on
hatching success. Although focused on different species, this
disparity may be explained by the relatively large difference in
diel thermal variance experienced. Whereas the maximum
mean diel temperature fluctuation recorded during our study
was only 1.417C, diel variation during artificial incubation in

the laboratory study reached 127C. Additionally, artificially
incubated eggs were repeatedly exposed to a constant level of
diel variation during development, unlike those incubated
naturally in the wild. If mean diel thermal variance increased
substantially in the Mediterranean and conditions became less
stable, we may expect a detectable relationship between diel
temperature fluctuation and hatching success to arise in ma-
rine turtles.
Nests with higher mean incubation temperatures had lower

hatch success on average. By extrapolating these data, we es-
timate that a mean incubation temperature exceeding ap-
proximately 35.17C will result in 0% hatching success. This

Figure 2. a, Effect of mean diel thermal variance on offspring mass. Solid line represents model output. Dotted lines represent the standard
error (50.86 g). b, Effect of nest depth on mean diel thermal variance. Solid line represents model output. Dotted lines represent standard
error (50.0057C). c, Relationship between female curved carapace length (CCL) and nest depth. d, Relationship between mean incubation
temperature and hatching success over 2011 and 2012. Dotted line represents extrapolated line of best fit.
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figure is in line with recently predicted figures of ∼357C
(Hawkes et al. 2007; Valverde et al. 2010). The absolute maxi-
mum incubation temperature recorded during this study was
35.97C. If these mounting data are accurate, these figures ap-
pear extremely concerning when viewed alongside predicted
surface temperature increases of up to 47C by 2100 (Hansen
et al. 2006), suggesting that TSD and thermal variance may
become irrelevant if mean incubation temperatures exceed
the predicted threshold for successful hatching.
There has been much discussion of late regarding the po-

tential for maternal adjustment of nest depth in model species
of freshwater turtles, more specifically, whether the manip-
ulation of nest depth is likely to deliver benefits in the face
of a rapidly changing climate (Georges 2013; Refsnider et al.
2013a, 2013b; Rödder and Ihlow 2013; Schwanz 2013). In a
small-bodied freshwater species, Refsnider et al. (2013b) con-
cluded that maternal adjustment of nest depth is unlikely to
significantly improve offspring sex ratio skews, suggesting in-
stead that shifts in components of nest site choice, rather than
nest depth, may be a more profitable maternal response. In-
deed, in comparing painted turtle (Chrysemys picta) neonates
from maternally selected nest sites with those from randomly
selected nest sites, Mitchell et al. (2013) recently presented
evidence that sex ratio selection appears to be an important
component of nest site choice in reptiles with TSD, support-
ing theories that behavioral plasticity will be a key factor in
ensuring the reproductive success of reptiles. Given that ma-
rine turtles exhibit natal philopatry and site fidelity, the
choices available to a nesting female when choosing a nest
site are limited (Lutz et al. 2003; Hawkes et al. 2007). Deeper
nests may help to negate the impacts of abiotic stress, but as
shown in this study, nest depth is positively correlated with
female size. Assuming that fertility is constant with age and
size, this potentially means that the reproductive success of
recently matured smaller females may be most at risk from less
thermally stable conditions.
In several areas, beach development and coastal squeeze

have begun to reduce the amount of cooler shaded habitat
available at nesting sites, such as dunes and dense vegetation,
that may otherwise provide preferable incubation conditions
and improve both hatching success and sex ratios (Hawkes
et al. 2007; Schlacher et al. 2007; Refsnider and Janzen 2012).
Recent publications have begun to recognize the value of nest
shading that natural vegetation provides, highlighting its im-
portance in maintaining thermal heterogeneity and facili-
tating behavioral plasticity in nest site choice (Kamel 2013;
Refsnider et al. 2013c; Woods et al. 2014). Perhaps most im-

portant, then, if females are to behave plastically when choos-
ing a nest site and maximize their reproductive success, con-
servation efforts need to focus on maintaining heterogeneity
at nesting sites, providing microhabitats that allow females
to do so. Hence, protecting nesting beaches that support
sufficient beach vegetation for clutch shading should be a
conservation priority. Additionally, this means that for popu-
lations that are heavily conservation dependent, options are
available to relocate clutches at risk to a more suitable area of
the beach, without having to transport them long distances.
Where vegetation has been lost and is unlikely to recover,
artificial shading could be a solution. Shading existing nests
would remove the need to relocate clutches; however, this does
require substantial manpower.
Marine turtle life history and a lack of heterogeneity may

limit nest site choice for females. Consequently, rather than
adapt spatially, females may adapt temporally. Based on the
findings in this study and the predictions of others (Pike et al.
2006; Hawkes et al. 2007), we may expect to see turtles nesting
earlier or later in the season, when temperatures are less ex-
treme. However, diel thermal variance appears greater during
these periods. Thus, although nesting earlier may avoid det-
rimental mean incubation temperatures, the effects of ther-
mal variance, if independent of the high thermal limits ex-
perienced at Alagadi, may persist. Whether hatchlings will
be faster, as suggested by Refsnider (2013), or suffer costs to
terrestrial locomotion, as suggested by Mickelson and Downie
(2010), it is evident that the mechanisms governing this re-
lationship need to be explored in more depth and the fitness
consequences and potential adaptive benefits of such a re-
sponse should be investigated in more detail. This study high-
lights the need for further research into how different patterns
of temperature variation affect reptilian offspring and the
mechanisms driving these changes.
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APPENDIX

Supplemental Figure

Figure A1. a, Distribution of mean nest depth for 2011 and 2012.
b, Distribution of mean offspring mass per nest for 2011 and 2012
(whiskers represent data within 1.5 interquartile range of the lower
and upper quartiles).
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