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INTRODUCTION

Studying the movements of large marine vertebrates
at sea is logistically challenging. Many species range
across entire ocean basins and, moreover, show
markedly differing distributions during different life
stages or seasons (Schmidt 1923, Scheffer 1952, Block
et al. 2001, Akesson 2002, Phillips et al. 2005). As a
result, there are significant gaps in our knowledge of
their at-sea distribution, ecology and behaviour, in
comparison to most similarly sized terrestrial verte-
brates. Seminal studies concentrated on the analysis of
large spatial movements using comparatively low-tech
methodologies such as mark and recapture (Hardy
1940, Wolfson 1948, Woodbury et al. 1956, Meylan

1982). However, the reliance on serendipitous tag
returns provides limited insight into individual move-
ments. Major inadequacies include pronounced spatial
and temporal biases in recording and reporting rates,
the lack of any indication as to the route taken or activ-
ity pattern during the intervening period; also, defini-
tion of the endpoint of migration is difficult. 

Radio/sonic tracking has provided data on localised
small-scale movements (Thompson & Miller 1990,
Williams & Rothery 1990, Nagelkerken et al. 2003).
However, it is logistically challenging to stay within
range of the study animals, and this approach is there-
fore inappropriate for monitoring wide-ranging or fast-
moving species (Ray et al. 1978, Montgomery et al. 1981,
Collazo & Epperley 1995, Fedak et al. 2002). These inad-
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equacies catalysed the development of satellite tracking,
which has global coverage and allows the detailed track-
ing of individual movements over large spatial scales
(Gillespie 2001). The use of satellite tracking in marine
vertebrates has increased exponentially over the last
decade (Godley et al. 2008, this Theme Section [TS]). 

Initially units were very large, and although progres-
sive miniaturisation has occurred, satellite tracking
equipment is still relatively expensive to purchase and
operate. This typically limits the number of study ani-
mals. Additionally, limited battery life, biofouling, fail-
ure to secure long-term attachment in most species,
and antenna fragility can lead to reduced transmission
duration. 

Geolocation (Global Location Sensing, GLS, logging)
offers the possibility of a long-term, less expensive
alternative to satellite tracking. GLS logging by light
uses the timings of sunrise, sunset and the resultant
day length and timing of local noon to derive an esti-
mation of global position (i.e. longitude and latitude)
(Wilson et al. 1992, Hill 1994). This technique has been
used to reveal large-scale patterns in the movements
of terrestrial vertebrates, pinnipeds, fish, and marine
birds (DeLong et al. 1992, LeBoeuf et al. 1993, Hunter
et al. 2003, Croxall et al. 2005, Phillips et al. 2005). The
main limitation with GLS logging is that of location
accuracy. It does not share the same fine-scale resolu-
tion as satellite telemetry (Beck et al. 2002, Phillips et
al. 2004), and many of the more affordable devices
require recovery, meaning that they can only realisti-
cally be used on animals that have a high likelihood of
recapture i.e. those with high site fidelity such as
marine turtles, seals and seabirds. Accuracy is low
around the vernal and autumnal equinoxes, when lati-
tudinal estimation is difficult or impossible (Wilson et
al. 1992, Welch & Eveson 1999). Errors also result from
cloud cover, shading and a change in location of the
device between dawn and dusk (Wilson et al. 1992). To
improve overall accuracy, previous studies have
applied filters and smoothing functions (Worton 1989,
1995, Sibert et al. 2003, Phillips et al. 2004, 2005, Wil-
son et al. in press) and incorporated concurrent tem-
perature or depth information (LeBoeuf et al. 2000,
Beck et al. 2002, Teo et al. 2004, Domeier et al. 2005,
Nielsen et al. 2006). 

The life history of marine turtles has until recently
been poorly described, with most studies concentrat-
ing on their behaviour at nesting beaches during egg
laying, with details of the greatest proportion of their
life spent at sea remaining relatively unknown. Tag
recoveries have provided limited information regard-
ing post nesting movements (Carr 1982, Meylan 1982,
Godley et al. 2003b, Seminoff et al. 2003, Lazar et al.
2004,) or ontogenetic changes in distribution of indi-
viduals (Musick & Limpus 1997). Radio tracking has

been used to estimate foraging ranges (Seminoff et al.
2002), directions of movements when leaving a rook-
ery (Addison et al. 2002) and inter-nesting movements
(Starbird et al. 1999). However, to date, the greatest
insights into the at-sea behaviour of marine turtles
have been gleaned using satellite telemetry (Morreale
et al. 1996, Papi et al. 1997, Hughes et al. 1998, Hays et
al. 2001a, Hatase et al. 2002, Ferraroli et al. 2004;
reviewed by Godley et al. 2008). Cost restriction has
limited the sample size and therefore the generality of
such results. A less expensive alternative utilising
information from a larger sample of tracked animals
would allow for better elaboration of dispersal
patterns, although cost-effectiveness will be dictated
by efficacy of device recovery.

Within the Mediterranean, most of the main nesting
beaches for the loggerhead turtle Caretta caretta and
green turtle Chelonia mydas are now well documented
(Broderick et al. 2002). The next challenge is to
discover the important migratory corridors, feeding
grounds and over-wintering sites for these species, as
these are as yet largely unknown. Limited work to date
using satellite telemetry has provided some insights
into these locations, but given the small sample sizes
(Godley et al. 2002, 2003b, Broderick et al. 2007),
the relative importance of these regions is equivocal.
Identifying important habitats may aid us in reducing
interactions with fisheries, a significant global source
of marine turtle mortality (Godley et al. 1998, Bugoni
et al. 2001, Lewison et al. 2003, 2004). The loggerhead
turtle in the Mediterranean is particularly vulnerable
to demersal and pelagic long-line fishing and trawl-
ing (Laurent et al. 1996, Casale 2003, Pinedo &
Polacheck 2004). 

In the present paper, we assess the error in using
GLS units to estimate location of marine turtles
between repeated nesting visits to the same rookery
in north Cyprus over a period of 3 mo. To date, we are
unaware of any published studies testing the efficacy
of GLS technology in turtles, although data logging
devices measuring a range of parameters, including
light, have been deployed in the past (Sato et al. 1995,
R. Wilson pers. comm. to B. J. Godley). This is
somewhat surprising as this approach lends itself
extremely well to the study of marine turtles as they
(1) disperse widely over 100s or sometimes 1000s of
kilometres; (2) possess a hard shell, which allows
device attachment and retention for several years; (3)
move relatively slowly, which may reduce the error
involved in this technique compared with that found
in other faster-moving animals; and (4) adult females
deposit multiple clutches per season and exhibit
strong levels of nest site fidelity, which facilitates the
recovery of devices within and between breeding
seasons.
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MATERIALS AND METHODS

Between June and August of 2004, fieldwork was
carried out at Alagadi beach, northern Cyprus
(35° 33’ N, 33° 47’ E). Alagadi is situated on the north
coast of Cyprus and has been the site of intensive
monitoring of green and loggerhead turtles since 1992
(Broderick et al. 2003). The beach is divided into 2
bays by a rocky outcrop and totals 2 km in length.
Turtles that had nested at Alagadi in a previous nest-
ing season were selected for this study as within-
season fidelity and clutch frequency was likely to be
higher than in other individuals. These factors would
increase the likelihood of GLS unit recovery within
the season. 

Two individuals were fitted with both a GLS unit
and satellite transmitter (1 green turtle: Kiwisat 101,
Sirtrack, Havelock North, New Zealand; 13.5 × 4.5 ×
1.8 cm, total mass 162 g; and 1 loggerhead turtle: ST-
18 Telonics, Mesa, AZ, USA; 14.0 × 4.8 × 3.3 cm, total
mass 275 g). GLS units (2 × 1.7 × 1.1 cm with a total
mass of 9 g, British Antarctic Survey, Cambridge, UK)
were placed into a specially designed housing (5.9 ×
5.9 × 3.0 cm, mass 48 g) to enable easy exchange/
removal. Satellite transmitters were attached to the
second central carapace scute, with the GLS housings
attached directly behind the transmitter on the third
central scute. Both device housings and satellite trans-
mitters were attached using a 2-part epoxy resin after
suitable preparation of the carapace (Godley et al.
2003a) during the egg-laying and nest-covering stage
of nesting. Resin was smoothed and fared around
devices in order to reduce hydrodynamic drag and
bio-fouling (Watson & Granger 1998). On each subse-
quent nesting event for that individual, the GLS unit
was retrieved and replaced by another device. Only
loggerhead turtles required restraint, owing to the
relatively short nesting duration (approx. 30 to
60 min); this restraint took the form of a 4-sided ply-
wood corral with inter-linking sides. Sand piled
around the sides gave the structure extra rigidity.
Once the resin had set, the box was dismantled, and
the turtle allowed to return to the sea (maximum
duration of restraint 1 h). 

In total, GLS units were deployed 4 times on the
loggerhead turtle and twice on the green turtle fitted
with satellite transmitters, with total deployment peri-
ods spanning 64 and 27 d respectively. There were
an additional 36 logger deployments, resulting in 22
datasets from 10 different individuals (2 loggerhead
and 8 green turtles; Table 1). The GLS units mea-
sured light intensity every 60 s, recording the maxi-
mum light levels during each 10 min interval
(Afanasyev 2004). Light data were analysed using
MultiTrace software (Jensen Software Systems). The

most appropriate dawn/dusk threshold and angle of
elevation (–4.9°) were determined from initial analy-
sis of a subsample of 8 files, on the assumption that
on the first day after deployment and the last day
preceding recapture the turtles were close to the
nesting beach. Fixed threshold values (the mean from
this subsample) were then used in the processing of
all files.

To further contextualize the likely inter-nesting
movements of this population we used past satellite
tracking data from 4 turtles (3 green and 1 loggerhead
turtle) tracked in 1998–2002, in addition to the 1 indi-
vidual of each species tracked in the study season
(Godley et al. 2002, 2003a and unpubl. data). Data
were processed and maps generated using Arc View
v.8.3 (ESRI GIS and mapping software) and Satellite
Tracking and Analysis Tool (STAT) (Coyne & Godley
2005).

Accuracy of light-based geolocation was calculated
by comparing either the mean daily satellite-derived
and mean daily GLS unit positions or by comparing the
satellite-derived positions and derived light-based
geolocation that were closest in real time. Only satel-
lite transmitter location classes 3, 2 and 1 (typical
accuracy of 150 to 1000 m; Keating et al. 1991, Argos
1996, Hays et al. 2001b) were used in these calcula-
tions. Great circle distances were used in the calcula-
tion of errors.
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Individual Deployments Recovered Days for 
units each unit

Aa 3 2 14, 13
B 5 4 15, 12, 13, 13
C 2 1 16
D 5 4 14, 12, 13, 13
E 2 1 28
F 2 1 14
G 2 2 14, 12
H 2 2 12, 11
I 2 1 35
J 1 0 0
K 1 0 0
L 1 0 0
M 1 0 0

Na 5 4 17, 13, 11, 23
O 3 2 13, 21
P 5 4 19, 14, 12, 12

Total 42 28
aAlso tracked by satellite telemetry

Table 1. Summary of global location sensing (GLS) unit
deployments at Alagadi beach, north Cyprus during 2004.
Number of days with data recorded for each logger are in
chronological order in terms of attachment date. A–M: green 

turtles; N–P: loggerhead turtles
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RESULTS

Most turtles tracked by satellite remained in the
proximity of Alagadi beach throughout the inter-nest-
ing period. The mean maximum distance travelled
during the inter-nesting period for green and logger-
head turtles was 15.6 km (SD 17.2, range 2.5 to
40.0 km, n = 4 green turtles; n = 9 inter-nesting peri-
ods) and 20.1 km (SD 21.6, range 4.8 to 35.4 km, n = 2
loggerhead turtles; n = 5 inter-nesting periods), respec-
tively, with no significant difference between the 2
species (Mann-Whitney U5 = 3.0, p > 0.05). The mean
GLS locations taken from the 28 inter-nesting periods
of the 12 tracked turtles demonstrated a centre signifi-
cantly closer to Alagadi for green turtles than logger-
head turtles (green turtles: mean 68.9 km, SD 20.9,
range 48.6 to 121.5 km, n = 18; Fig. 1a; loggerhead tur-

tles: mean 107.5 km, SD 48.2, range 53.2 to 212.2 km,
n = 10; Fig 1b; Mann-Whitney U27 = 34.0, p < 0.01).

The mean great-circle distance between the mean
daily satellite positions and mean light-based geoloca-
tion for the same day were similar in green and logger-
head turtles (green turtles: mean 50.4 km, SD 19.4,
range 15.5 to 86.1 km, n = 13; loggerhead turtles: mean
57.6 km, SD 30.2, range 23.3 to 103.3 km, n = 5: Fig 2a).
Similar results were obtained when comparing the
mean light-based geolocation with the satellite posi-
tion closest in time (green turtles: mean 62.1 km, SD
31.0, range 5.6 to 108.3 km, n = 13; loggerhead turtles:
55.3 km, SD 24.0, range 27.8 to 85.5 km, n = 5: Fig. 2b).
There were no significant inter-specific or inter-
methodological differences in error (Kruskal-Wallis
[KW] = 1.437, p = 0.6970)

DISCUSSION

Based on the satellite tracking, the inter-nesting
movements of both species were similar, with most
females appearing to stay close to Alagadi. Geoloca-
tion results also indicated that both species remained
close to the nesting site, and also suggested a greater
range in the dispersal distance of loggerhead com-
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pared to green turtles. That this is a genuine difference
in the distance travelled is not borne out by the limited
satellite tracking data. An alternative explanation is a
behavioural difference affecting the accuracy of the
GLS unit. This may take the form of differences in dive
depths, and/or time spent at depth, as light intensity is
rapidly attenuated with depth or water quality. The 2
species differ in feeding strategy; green turtles in the
inter-nesting period are thought to graze on sea
grasses (Hochscheid et al. 1999, Hays et al. 2002b),
whereas loggerhead turtles, should they remain within
the neritic zone, feed by infaunal mining (Preen 1996)
and would therefore be expected to forage among the
benthos (Hatase et al. 2002, Houghton et al. 2002). As
sea grass beds are most productive in shallower
waters, it might be expected that green turtles would
generally feed at shallower depths. Furthermore, if
loggerhead turtles were foraging in soft substrata,
there may be considerable disturbance of the sedi-
ments, leading to an increase in water turbidity and
therefore greater light attenuation. 

The average errors in our geolocation estimates
were 50 to 60 km, based on mean positions calculated
from the concurrent satellite transmitter and GLS data
from 2 turtles. As expected, latitudinal error was
greater than longitudinal error. Mean geolocation
errors calculated in previous studies of other taxa vary
considerably, from 34 to >1000 km (for a review, see
Phillips et al. 2004). Marine turtles swim slowly and
during the nesting season remain relatively faithful to
the vicinity of the nesting beach. Therefore, they
probably move little between dawn and dusk each
day, which improves timing information. However, the
accuracy of devices deployed for long periods on
migrant turtles is unlikely to be as high as in this 
short-term study, when we may have been fortunate
with regard to atmospheric conditions and cloud cover.
There are also a number of other issues which need to
be taken into consideration, as described below.

Shading or changes in sensor orientation also reduce
the accuracy of geolocation estimates. During this
study one of the housings was irreparably damaged,
and although the likelihood of this recurring could be
reduced by more posterior placement, this would need
to be traded off against possible reduction in light-
gathering capabilities. Following the final clutch of the
season, GLS units were deployed upon nesting
females to test their robustness and durability during
the remigration interval. 

Accuracy levels may fluctuate during different
stages of turtle migration and at over-wintering/forag-
ing grounds where water turbidity might vary, or the
animals might forage at different depths, shelter in
caves or under overhangs. When turtles are migrating
across open-water, they spend the majority of the time

at shallow depths, which should enable good light-
gathering opportunities. However, this is when sea
turtles travel the greatest distances in a 24 h period
(Godley et al. 2002, Luschi et al. 2003), which might
affect the estimates of day length and timing of local
noon, and therefore both latitude and longitude. One
factor which should ease data interpretation, at least in
the Mediterranean basin, is that adults migrate to
coastal regions: our studies to date have shown that
females over-winter in Cyprus, Egypt, Libya, Syria and
Turkey (Fig. 3; Broderick et al. 2007). Hence, likely
locations should be constrained latitudinally (in most
cases), or longitudinally. Given the large spatial scales
of these movements and despite the relatively low
accuracy of geolocation methods, extremely useful
information should therefore be obtained on timing of
movement and location of wintering/foraging grounds
(Broderick et al. 2007). In addition, turtles tracked from
north Cyprus exhibit a high degree of site fidelity,
remaining in the same areas for 12 to 48 mo (Godley et
al. 2002, Broderick et al. 2007). Such areas should be
readily identifiable using smoothing or kernelling
techniques (Phillips et al. 2004, Wilson et al. in press).
Complementary data logging devices such as temper-
ature loggers used in conjunction with GLS technology
can improve geolocation accuracy (LeBoeuf et al. 2000,
Beck et al. 2002). The logged temperature can be com-
pared with known sea surface temperatures (SST) to
improve latitudinal estimates (Sims et al. 2003, Teo et
al. 2004). A possible cause for concern in deployments
of many months duration in the marine environment is
bio-fouling, which would seriously reduce the light-
gathering capabilities of GLS loggers. However, within
the Mediterranean basin, epibiont loading on marine
turtles appears to be lower than in many other oceanic
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regions (B. J. Godley pers. obs.) and hopefully useable
data will be gathered from over-wintering sites before
bio-fouling becomes an issue. 

It is clear from the promising level of accuracy found
in this pilot study and the spatial scales over which
these species move within the Mediterranean (Godley
et al. 2002, 2003a, Broderick et al. 2007) that long-term
GLS deployments hold great potential for unlocking
information on important migratory corridors and over-
wintering/foraging grounds of female turtles. Provided
that a sufficient quantity of GLS units can be attached
and recovered successfully, this technique has the
potential to offer fundamental insights into sea turtle
biology and conservation. However, a location error of
over 50 km for GLS tracking suggests single applica-
tion of GLS units may not be suitable to examine the
small-scale movements of animals (e.g. inter-nesting
period of marine turtles). Given that all species of
marine turtles are of conservation concern, data
gleaned from this type of study will help inform the
international research community, enabling effective
targeting of mitigation, designation of marine pro-
tected areas (MPAs) etc. Given the profound conserva-
tion significance of this work, we hope that the publi-
cation of our data will galvanise further utilisation of
this tracking technology. 
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